Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Remote Sensing of Environment ; 295:113658, 2023.
Article in English | ScienceDirect | ID: covidwho-20243596

ABSTRACT

Satellite nighttime light (NTL) images offer a valuable depiction of the rapidly changing world by revealing the presence of artificial illumination. Thus, daily NTL images are increasingly applied to monitor human dynamics and environmental events. However, data gaps caused by cloud contamination and low-quality observations inevitably impair the effectiveness of such applications. Although a temporal gap-filling method is employed in recent Black Marble NTL products to produce seamless images, the filled images are unsuitable for quantitative analysis. Therefore, we developed an effective method, named as Cloud Removing bY Synergizing spatio-TemporAL information (CRYSTAL), to generate cloud-free NTL images with satisfactorily accurate pixel brightness and spatial continuity. Simulation experiments show that CRYSTAL can produce more accurate results than the temporal gap-filling method in fifteen cities worldwide, with an average RMSE reduction of 33.69%. Images generated by CRYSTAL restore temporal variances in NTL and are thus suitable for multi-temporal quantitative analysis. CRYSTAL can reconstruct daily NTL time series by filling gaps using available partially clear images. Experiments in two cities demonstrated that the reconstructed time series had 31.85% more valid values than the original time series and effectively revealed urban dynamics during the early stages of the coronavirus disease 2019 pandemic. In summary, CRYSTAL is a novel and effective gap-filling method for the restoration of invalid NTL observations and has the potential to generate high-quality NTL data for use in future applications.

2.
Comput Biol Med ; 157: 106726, 2023 05.
Article in English | MEDLINE | ID: covidwho-2309093

ABSTRACT

Deep learning-based methods have become the dominant methodology in medical image processing with the advancement of deep learning in natural image classification, detection, and segmentation. Deep learning-based approaches have proven to be quite effective in single lesion recognition and segmentation. Multiple-lesion recognition is more difficult than single-lesion recognition due to the little variation between lesions or the too wide range of lesions involved. Several studies have recently explored deep learning-based algorithms to solve the multiple-lesion recognition challenge. This paper includes an in-depth overview and analysis of deep learning-based methods for multiple-lesion recognition developed in recent years, including multiple-lesion recognition in diverse body areas and recognition of whole-body multiple diseases. We discuss the challenges that still persist in the multiple-lesion recognition tasks by critically assessing these efforts. Finally, we outline existing problems and potential future research areas, with the hope that this review will help researchers in developing future approaches that will drive additional advances.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Algorithms
3.
J Affect Disord ; 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2236288

ABSTRACT

BACKGROUND: Due to the onset of sudden stress, COVID-19 has greatly impacted the incidence of depression and anxiety. However, challenges still exist in identifying high-risk groups for depression and anxiety during COVID-19. Studies have identified how resilience and social support can be employed as effective predictors of depression and anxiety. This study aims to select the best combination of variables from measures of resilience, social support, and alexithymia for predicting depression and anxiety. METHODS: The eXtreme Gradient Boosting (XGBoost1) model was applied to a dataset including data on 29,841 participants that was collected during the COVID-19 pandemic. Discriminant analyses on groups of participants with depression (DE2), anxiety (AN3), comorbid depression and anxiety (DA4), and healthy controls (HC5), were performed. All variables were selected according to their importance for classification. Further, analyses were performed with selected features to determine the best variable combination. RESULTS: The mean accuracies achieved by three classification tasks, DE vs HC, AN vs HC, and DA vs HC, were 0.78, 0.77, and 0.89. Further, the combination of 19 selected features almost exhibited the same performance as all 56 variables (accuracies = 0.75, 0.75, and 0.86). CONCLUSIONS: Resilience, social support, and some demographic data can accurately distinguish DE, AN, and DA from HC. The results can be used to inform screening practices for depression and anxiety. Additionally, the model performance of a limited scale including only 19 features indicates that using a simplified scale is feasible.

4.
Journal of Power Sources ; 559:232625, 2023.
Article in English | ScienceDirect | ID: covidwho-2180902

ABSTRACT

A photocathode-microbial electrochemical coupling system (PC-MFC) using black phosphorus-doped titanium dioxide nanobelt (BP/TB) as a photocatalyst is constructed for the degradation of hydroxychloroquine (HCQ, used to treat COVID-19). The degradation efficiency of HCQ (100 mg/L) in coupling system is 73.7% within 8 h, higher than that of photocatalysis (69.5%), MFC (25.6%), and adsorption (9.6%). The photocathode coupling facilitates subsequent bioelectric treatment, resulting in complete degradation of HCQ (100 mg/L) within 96 h in PC-MFC, much higher than in MFC (51.1%). Illumination of PC-MFC significantly increases the cathodic abundance of Pseudomonadales ord. (from 1.83% to 66.30%), accumulates biomass, improves the electrochemical behaviors of photocathode and bioanode, and finally increases the maximum power from 241 to 280 mW/m2. The electron transfer pathways depende on nicotinamide adenine dinucleotide dehydrogenase, succinate dehydrogenase and terminal oxidase. The coupled system enhances the dechlorination reduction of HCQ and reduces the biotoxicity of its degradation pathway. PC-MFC represents a new strategy for the treatment and energy recovery of refractory organic compounds in wastewater.

5.
Int J Environ Res Public Health ; 18(14)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1314641

ABSTRACT

With the COVID-19 vaccination widely implemented in most countries, propelled by the need to revive the tourism economy, there is a growing prospect for relieving the social distancing regulation and reopening borders in tourism-oriented countries and regions. This need incentivizes stakeholders to develop border control strategies that fully evaluate health risks if mandatory quarantines are lifted. In this study, we have employed a computational approach to investigate the contact tracing integrated policy in different border-reopening scenarios in Hong Kong, China. Explicitly, by reconstructing the COVID-19 transmission from historical data, specific scenarios with joint effects of digital contact tracing and other concurrent measures (i.e., controlling arrival population and community nonpharmacological interventions) are applied to forecast the future development of the pandemic. Built on a modified SEIR epidemic model with a 30% vaccination coverage, the results suggest that scenarios with digital contact tracing and quick isolation intervention can reduce the infectious population by 92.11% compared to those without contact tracing. By further restricting the inbound population with a 10,000 daily quota and applying moderate-to-strong community nonpharmacological interventions (NPIs), the average daily confirmed cases in the forecast period of 60 days can be well controlled at around 9 per day (95% CI: 7-12). Two main policy recommendations are drawn from the study. First, digital contact tracing would be an effective countermeasure for reducing local virus spread, especially when it is applied along with a moderate level of vaccination coverage. Second, implementing a daily quota on inbound travelers and restrictive community NPIs would further keep the local infection under control. This study offers scientific evidence and prospective guidance for developing and instituting plans to lift mandatory border control policies in preparing for the global economic recovery.


Subject(s)
COVID-19 , Quarantine , COVID-19 Vaccines , China , Contact Tracing , Hong Kong , Humans , Models, Theoretical , Policy , Prospective Studies , SARS-CoV-2
6.
International Journal of Geographical Information Science ; : 1-20, 2021.
Article in English | Taylor & Francis | ID: covidwho-1045930
7.
Epidemics ; 32: 100397, 2020 09.
Article in English | MEDLINE | ID: covidwho-548801

ABSTRACT

The rapid expansion of coronavirus disease 2019 (COVID-19) has been observed in many parts of the world. Many newly reported cases of COVID-19 during early outbreak phases have been associated with travel history from an epidemic region (identified as imported cases). For those cases without travel history, the risk of wider spreads through community contact is even higher. However, most population models assume a homogeneous infected population without considering that the imported and secondary cases contracted by the imported cases can pose different risks to community spread. We have developed an "easy-to-use" mathematical framework extending from a meta-population model embedding city-to-city connections to stratify the dynamics of transmission waves caused by imported, secondary, and others from an outbreak source region when control measures are considered. Using the cumulative number of the secondary cases, we are able to determine the probability of community spread. Using the top 10 visiting cities from Wuhan in China as an example, we first demonstrated that the arrival time and the dynamics of the outbreaks at these cities can be successfully predicted under the reproduction number R0 = 2.92 and incubation period τ = 5.2 days. Next, we showed that although control measures can gain extra 32.5 and 44.0 days in arrival time through an intensive border control measure and a shorter time to quarantine under a low R0 (1.4), if the R0 is higher (2.92), only 10 extra days can be gained for each of the same measures. This suggests the importance of lowering the incidence at source regions together with infectious disease control measures in susceptible regions. The study allows us to assess the effects of border control and quarantine measures on the emergence and global spread of COVID-19 in a fully connected world using the dynamics of the secondary cases.


Subject(s)
Betacoronavirus , Communicable Disease Control/organization & administration , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Travel , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Humans , Incidence , Models, Statistical , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL